
The Adoption of M-Pesa: A Percolation Approach to Network

Goods

Lisa Reed Janet Stefanov Zerrin Vural

24 July 2020

Abstract: In 2007, Kenya’s mobile network operator Safaricom launched M-Pesa, a mobile phone-
based money transfer service. Today over 95% of Kenyan households use M-Pesa, making Kenya one
of the first developing countries to fully embrace mobile payment systems. M-Pesa merits further
academic investigation due to Kenya’s resulting economic growth and reduction of poverty since its
inauguration. Here we reference percolation theory from statistical physics to develop a theoretical
model of the spread of M-Pesa from 2007 to 2014. We consider M-Pesa a network good that spreads
primarily via word of mouth and assume its chance of adoption is determined by the utility a person
can derive from it. This utility increases primarily with the number of M-Pesa users in one’s social
network. We simulate the spread of M-Pesa throughout Kenya by using social network models and
measure the goodness of fit of the model. Our model may be useful in analyzing the potential for the
propagation of mobile money in other developing countries. We hope our findings will highlight the
positive impact to be made by mobile money systems and motivate others to realize similar effects
in developing countries.

1 Introduction

1.1 M-Pesa: Mobile Money

To use M-Pesa, an individual must find an M-Pesa agent to deposit or withdraw money from their
account. Money transfers are then sent by SMS messages. The recipient need not be a M-Pesa user,
though there is a separate and costlier pricing schedule for non-users. As soon as the transaction
is finished, the sender receives a SMS confirmation, and the recipient receives a notification about
the transfer of money. Currently, there are 37 million active users and 400,000 agents operating in
7 countries: the Democratic Republic of Congo, Egypt, Ghana, Kenya, Lesotho, Mozambique and
Tanzania. M-Pesa is most ubiquitous in Kenya, its premier country, and is being used in over 90%
of Kenyan households. The prevalence of M-Pesa in Kenya has prompted reviews from economists
and scholars.
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1.2 Motivation

Mobile money networks, buoyed by the prevalence of mobile phones, have created an opportunity for
a new system of financial capital. One success story is M-Pesa in Kenya.1 M-Pesa is a mobile money
transfer service launched in March 2007 that enables users to transfer money electronically through a
series of text messages. The introduction of this app facilitated simple money transfers, and allowed
for unbanked populations to have access to formal financial resources. By 2016 M-Pesa’s widespread
use was apparent, with 96% of Kenyan households using the service [13]. Further significance of
M-Pesa lies in its impact of having increased per capita consumption and reduced the number of
households in extreme poverty [13], lending itself to be a product worthy of further analysis.

Kenya in the period from 2007 to 2014 is an attractive candidate for a percolation model as this
time period captures the primary spread of M-Pesa. In this paper, we draw upon statistical physics
to model the initial spread of M-Pesa throughout Kenya as a percolation process. Looking further,
this percolation model could potentially be applied to predict success or failure in other countries
by changing relevant parameters to the data of a given country.

2 Literature Review

Literature on network goods is expansive. There are a few areas that most closely relate to the
topics discussed in the percolation approach: microeconomic studies on the household effects of
mobile money and econophysics studies on the diffusion of goods.

2.1 Household Effects of Mobile Money

In a seminal paper analyzing the effects of M-Pesa in Kenya, economists William Jack and Tavneet
Suri found that mobile money has allowed increased efficiency of both the allocation of labor and
the allocation of consumption over time. They estimated that this effect raised at least 194,000
households out of extreme poverty [13]. The ability for a mobile money transfer service to lift 2%
of Kenyan households out of poverty is a substantial result that makes further analysis of M-Pesa
meaningful and worth pursuing. A better understanding of the dynamics of M-Pesa, such as the
method of M-Pesa’s spread, could lead to important insights regarding the implementation of mobile
money in other developing countries in an attempt to produce a similar result. Studies have found
that M-Pesa’s resounding success in Kenya is facilitated by the combination of a few factors.

First, Safaricom, a subset of Vodafone and Kenya’s main mobile phone provider, has a near-monopoly
on telecommunications. Estimates on the market share of Safaricom fall at 88%. This means
that Safaricom has a strong initial market presence and is able to efficiently advertise and build
participation. Thus, M-Pesa was created on the shoulders of an existing phone network. As a result
of the explosion in mobile phone usage, Safaricom agents were already positioned to respond to
demand for cell phones. Given the positive correlation between phone use and M-Pesa use, demand
for M-Pesa largely mirrors the demand for phone services, and the existing Safaricom network was
easily able to scale its operations. Now there are more than 110,000 M-Pesa agents within Kenya,
and the average user reports that they can find an agent within 260 meters [14]. Kenyans also report

1Pesa is the Swahili word for money.
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that M-Pesa is relatively easy to use; on a scale from 1-5, where 5 is extremely difficult, the average
rating is 1.479 [14].

Furthermore, public trust in mobile network operators such as Safaricom is higher than public trust
in banks and formal financial institutions, consistent with general trends in the developing world.
In Kenya, many banks collapsed in the 1990s, creating permanent distrust in the formal financial
sector. Another factor contributing to public trust in M-Pesa is its origin as the idea of M-Pesa first
started at Moi University in Kenya. By originating within Kenya, it helped create trust as being
an app created both by and for Kenyans. Additionally, because nearly all phone users in Kenya are
clients of Safaricom as discussed earlier, advertisement through social learning can be very effective
and allow M-Pesa to easily expand [7].

Also, Kenyans have found utility in M-Pesa through its facilitation of easy and secure sending of
remittances. Studies on the household effects of M-Pesa have found that an urban-rural channel
of remittance flows has been supported by M-Pesa [3, 11]. Migrant workers in Kenyan cities using
M-Pesa have an efficient and safe method of transferring money to their relatives in rural areas,
increasing shared prosperity. This is compatible with the fact that the number of migrant workers
in Kenya has risen since the expansion of M-Pesa use [13, 11].

Lastly, Kenya has a substantial unbanked population. For the unbanked, a mobile money service
can be viewed as a sufficient substitute for more formal financial services, while also bearing fewer
costs and barriers to entry. While M-Pesa is a money transfer service, many users report using it as
a means to save by keeping a balance on their account [11].

When considering the potential spread of M-Pesa beyond Kenya, one must keep in mind these
circumstances as complicating factors in extending the model to other countries. Regardless, M-
Pesa’s availability to unbanked populations give it the potential for major success in the developing
world. Access to credit and payment systems through this virtual format results in a new sector of
the population being able to access financial capital.

2.2 Econophysics Modeling of Diffusion of Goods

It is cheapest and simplest for M-Pesa users to send and receive money within the user base of the
app. This feature makes M-Pesa a classic network good: the value of M-Pesa to a consumer grows
as more people use it. In the case of M-Pesa, word of mouth advertising is particularly effective and
can be considered the primary motivation for which individuals eventually adopt the app.

Previous work by economist Arthur Campbell (2013) models the effects of word of mouth advertise-
ment in the context of different social structures. In particular, Campbell assumes that consumers
must receive information about a monopolist’s product directly from a user that is also a contact;
our analysis continues these assumptions [4].

3 Estimating the Adoption of M-Pesa

In addition to contributing to literature on mobile money networks, we also contribute to literature
on network goods generally. We contribute by building a model that can be applied to a network good
that relies on widespread adoption and provides valuable insights for targeted advertising strategies.
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Specifically, here we summarize data to determine the reasons of adoption or non-adoption of M-Pesa
as stated by Kenyan users or non-users.

Our approach to modeling the the adoption of M-Pesa is heavily influenced by the work of Dan
Björkegren [2]. In particular, we model adoption as an optimal stopping problem, where individuals
delay adoption by some time t, and then they adopt. This technique is appropriate, as adopting
M-Pesa has nontrivial barriers to entry for individuals who do not have mobile phones and little
incentive for individuals with limited social networks and contacts. We capture both of these effects
in our theoretical model.

3.1 Optimal Stopping Problem

In this section, we set up an optimal stopping problem, where the individual decides the optimal
time to register as a user of M-Pesa. The individual faces costs of usage, including per-transaction
costs, hassle-costs of finding an agent and waiting in line, and potential technology costs such as
purchasing a compatible phone. However, the individual derives benefit from performing money
transfers. The individual thus earns utility according to the following model:

uijkt = max[1/φcostF (ni,j,t, nk,i,t)− δ(ni,j,t + nk,i,t), 0].

In this model, φcost is a constant that incorporates the fixed cost of adoption and a conversion
between utility and currency, ni,j,t is the number of transactions from individual i to j in regime
t, nk,i,t refers to the number of transactions from individual k to i in regime t, and δ refers to
the aggregated per-transaction cost for sending and receiving money, including hassle costs. The
function F takes as inputs the number of transactions of individual i and outputs a value for i’s
utility. The adoption point is the first regime where uijkt is strictly greater than zero.

With this optimal stopping framework for the adoption decision, we make a few assumptions about
the function F . First, F is increasing in both inputs. Second, F in our model is implemented as
a single-variable function based on the proportion of individual i’s contacts that use M-Pesa. This
single variable captures the relative size of the potential circle of candidates for money transfers, and
we find it a sufficient proxy for the number of transfers, while also allowing the adoption dynamics
and decision to be endogenously determined in each period.

3.2 Motives for Adoption

In reality, there exists never-users, or individuals who will never adopt M-Pesa. This includes both
individuals who do not have access to the type of technology necessary to use M-Pesa and individuals
that do not have any contacts outside of a small spatial radius and do not travel, and therefore do
not have an incentive or need to use mobile money. Never-users are entirely contained in the set
of non-users. In our model, we do not include those without access to necessary communication
technology as part of the social network. Those with little incentive to adopt mobile money are
represented in the network and are reflected in the asymptotic behavior of the percentage of users
over time. 2

2This population is limited, given the increasing mobility of the developing world, and it is very difficult to obtain
economic activity data for this type of individual.
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To determine a baseline estimate of the never-users to compare our results to, we use a pooled
estimate of the reasons non-users provided for delaying adoption (Table 1). Since our model assumes
a relatively constant proportion of never-users throughout time, we minimized variation over time
by using all years to generate an estimate for the upper bound of the percentage of users in the
population. We obtained our data regarding non-use and adoption of M-Pesa from the 2014-2016
Financial Inclusion Insights Kenyan survey [9].

Figure 1: Results from the Insights 2014-2016 Kenya Survey. This survey asked mobile money users
the reason for their adoption of it, and non-users the reason for their non-use.

Table 2 shows the reasons users gave for adoption. Since we consider M-Pesa to be spread by word of
mouth, we are particularly interested in the proportion of new-users who adopted the app as a result
of another user’s request. It is notable that 78% of M-Pesa users gave a reason for adoption directly
related to interactions with other people, labeled in Figure 1 as social reasons. In contrast, only 18%
of non-users gave a social reason for their non-use. This indicates that social factors are a strong
determinant of the decision to adopt M-Pesa, but are less influential towards an individual’s decision
to not adopt M-Pesa. Due to this finding, we are able to justify our assumption that contacts can
only positively influence the adoption decision in order to simplify our model. This means that
having a contact that is a user shortens the time to adoption. Under full diffusion, the limit set of
non-users would be the set of never-users. In the case of partial diffusion, there will be non-users
who are not aware that the app is available or who do not have enough social incentive to adopt the
app.
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Reason Number Proportion
I do not know what it is / what I can use it for 52 0.0352700
I do not know how to open one / use the service 130 0.0838170
I do not have a state ID or other required documents 216 0.1392650
There is no point-of-service / agent close to where I live 39 0.0251450
I do not need one, I do not make any transactions 226 0.1457120
Registration paperwork is too complicated 6 0.0038680
Using such account is difficult 29 0.0186980
Fees for using this service are too high 9 0.0058030
I never have money to make transactions with this service 295 0.1902000
No one among my friends or family use this service 8 0.0005158
I do not understand this service; I do not know what I can use it for 30 0.0193420
I do not have a mobile phone 155 0.0999360
I do not trust that my money is safe on a mobile money account 20 0.0128950
My husband, family, do not approve of me having an account 13 0.0083820
It does not provide any advantage over my current financial service 9 0.0058030
Other 314 0.2024500

Table 1: Reasons for Non-Use of M-Pesa

Reason Number Proportion
I had to send money to another person 1798 0.248608
I had to receive money from another person 3343 0.465340
Somebody requested I open an account 104 0.014477
I had to send money to an organization/government agency 29 0.004037
I had to receive money from an organization/government agency 18 0.002506
An organization/government agency requested I sign up for an account 20 0.006264
An agent or sales person convinced me 45 0.002784
I saw posters/billboards/radio/TV advertising that convinced me 31 0.004315
A person I know, who uses mobile money, recommended I use it 127 0.017678
I saw other people using it / most of my friends or family are using it 202 0.028118
I wanted to start saving money with a mobile money account 446 0.062082
I wanted a safe place to store my money 443 0.061665
I was given a promotion to start using it 8 0.001114
Other 582 0.081013

Table 2: Reasons for Adoption of M-Pesa
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4 Theoretical Model

4.1 A Brief Introduction of Percolation Theory

Percolation theory is a theory of statistical physics that describes phase transitions and the critical
behavior of a networked interactions. Things like the internet, power grids, conductivity in materials,
porous substances, and virus spread in a population are all examples of systems whose behavior relies
on the interconnectedness of its components.

A standard model of percolation theory can be considered with the spread of a forest fire. Given
a lattice, each node is occupied by a tree with probability p, and is not occupied by a tree with
probability 1− p. The fire spreads if there are trees occupying the sites next to a tree on fire. This
eventually reaches a fixed state where the spreading stops as no nodes catch fire. Increasing p results
in clusters of trees on fire. There exists some critical probability Pc needed in order to go from local
clusters to global behavior. This is an example of site percolation.

Figure 2: Site percolation modeled by trees (green circles) occupying each lattice point of a forest
with probability p. p can also be though of as the packing ratio of the 2D lattice. In panel a, p < Pc,
and therefore any fire that may break would be contained. In panel b, p > Pc, so a forest fire would
percolate from the top of the lattice to the bottom, spreading throughout the forest.

Percolation theory has also been used to model the spread of disease through communities as il-
lustrated in Figure 3. In this models, a node represents a host for a disease, and is occupied if
the host is susceptible to the disease. Edges between nodes represent possible contacts of disease
transmissions, and the edges exist between hosts with probability p. If the hosts are also susceptible
with some probability (i.e. some nodes will not be occupied, thus slowing the spread of disease),
then this is an example of site and bond percolation. With this, the critical behavior of a disease
going from being contained to becoming an epidemic can be studied.
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Figure 3: Here bond percolation is illustrated by a simple 2D lattice. Let every person in a lattice be
susceptible, and assume they are in contact with the nodes adjacent to them (nodes are not connected
diagonally). Red nodes represent infected people. Let p be the probability that an infected person
transmits the disease with someone they’re in contact with. In panel a, p << Pc, one person is
infected, and has not spread the disease. In panel b, p > Pc, and now several people have become
infected. The potential of infected people to spread the disease further is represented by the arrows
to blue, uninfected nodes.

Percolation theory has also been used in economics to model the spread of a consumer good. In
these cases, the good is usually given a utility function that factors into whether or not someone
adopts a good. We study the percolation of M-Pesa across Kenya as a network good, since the value
of M-Pesa grows as more people use it.

4.2 Population Networks

The interconnectedness of Kenya’s population is represented by a network where nodes are people
and edges are connections between people. Since we are looking at the demand formed through social
learning of consumers, it is important that this network has properties of a real world social network.
A number of different structures were considered to model a social network, notably Erdős–Rényi,
Watts-Strogatz, and Barabási-Albert networks.

Different types of networks have different types of topology, such as the nodal degree, which refers
to how many connections each node has. Regular random networks are statistically homogeneous in
the degree of nodes, and in the pattern of connectivity of nodes. However, most real world networks
don’t follow the homogeneous nodal or connectivity distributions found in regular and random
networks. Erdős–Rényi (ER) random graphs feature a set of discrete nodes that are connected by
edges with uniform and independent probability. These types of network structures produce nodes
with statistically homogeneous nodal degree, and the degree distribution is Gaussian. These graphs
tend to have short path lengths and low levels of clustering. This is not consistent with real world
social networks, which are not generated randomly, typically have larger clustering coefficients, and
have degree distributions that follow a power law - and therefore do not have a homogeneous number
of connections amongst the nodes.
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Networks that exhibit what is called the “small world property” have a small average path length,
meaning the number of edges on the shortest path between nodes is small compared to what you
would see in a regular or random graph. Sociologist and mathematician Watts and Strogatz wanted
to more accurately model real world social networks, which were found to have high clustering and
short path lengths and created a generative model for this. The Watts-Strogatz network structure
attempts to create a “small-world” effect by connecting discrete nodes with non-uniform, pre-selected
probabilities and then randomly rewiring them. This creates a high degree of clustering, leading to
groups with high probabilities of connectivity among individuals. The Watts-Strogatz structure also
allows for “long distance” connections resulting in short average path lengths, which is consistent
with social patterns. This structure has attractive properties, but it does not capture the organized
variability in the connectivity of individuals as seen in real world networks.

Finally, the Barabási-Albert structure gave the most realistic and desirable properties in the context
of the model. This graph generates scale free networks by using preferential attachment, meaning
new nodes are more likely to be connected to existing nodes with high nodal degrees. As a result, a
small but significant number of nodes have a very large degree (called hubs), while a large number of
nodes have small degree. Evidence supporting this “rich get richer” phenomenon in social networks
can be found in the data and microdata from Kenya. Furthermore, the Barabási-Albert network’s
scale free property means that its degree distributions follows a power law, where the probability of a
node having a given degree is P (n) ∼ n−γ where γ > 1. The scale-free characteristic of this network
is more consistent with real world networks, and allows us to create a network that represents both
village and urban populations. Furthermore, in previous work epidemiologists have made use of the
Barabási and Albert model to capture social interactions amongst susceptible populations. This
supported our decision to adopt this type of network structure for social connections [5, 1, 10].

4.3 The Model

For our percolation model, we consider a population of size N as a network with N = {1, ..., n}
nodes, connected using preferential attachment to form a Barabási-Albert network with some initial
nodal degree k0. Each person is assigned an initial utility value for M-Pesa according to a normal
distribution ui0 ∼ N(µ, σ2). This utility is akin to the probability that someone will adopt M-Pesa
if introduced to it. If a person’s valuation for M-Pesa is above a certain threshold Uc, then we say
that they will adopt the app. Initially there will be a small fraction of the population that adopts
the app due to product advertisement. The rest of the population will learn about the app through
word of mouth advertisement from their contacts. At each time stamp probabilities were increased
by a function dependent on how many people with M-Pesa someone is now connected to, using the
formula ut = ut−1 (1 + friend weight × number of friends with M-Pesa). If the updated probability
is greater than Uc, that person will then adopt M-Pesa. 3

4.4 Model Parameters

In determining parameters, the following terms were defined. Threshold Utility (Uc) is the minimum
utility someone must receive to adopt M-Pesa. This can also be interpreted as the total costs of use
for the intended number of transactions. Initial Utility, (ui), is the initial valuation of M-Pesa for a

3The software that we used to generate the random graphs and compute the adoption probabilities at each stage
can be provided upon request.
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Figure 4: At each time stamp we expect to see an increase of M-Pesa users especially from individuals
whose contacts have adopted M-Pesa in recent time stamps, consequently increasing the utility that
person can derive from adopting M-Pesa, making them more likely to adopt. In this diagram we
expect red nodes who’s number of green conacts are increasing over time to have a higher probability
of adopting M-Pesa in subsequent months.

user, which determines the baseline level. We used a normal distribution for these initial utilities.
An adjacency matrix represented the connections between individuals. A one for the entry (i,j)
in the matrix shows that individuals i and j are connections. Because most social connections are
reciprocal, we assume the connections are reciprocal and thus the adjacency matrix is symmetric. K
represents the number of connections in the social network. The friend weight determines a user’s
percentage increase in utility for each connected friend that adopts M-Pesa.

Our model depends on the individual’s utility changing at each stage in response to the decisions
of their contacts in the previous stage. The impact of having friends who are users of M-Pesa on
the individual adoption utility follows a pre-selected function that remains constant throughout the
model, but the inputs are specific to each individual. In creating our initial constraints, we assume
monotonic increases in utility. A linear change was selected in the adoption utility based upon each
additional connection that adopts M-Pesa.

5 Implementation & Results

In developing code for the percolation simulation, we adapted sections from Allen Downey’s book
Think Complexity [6] to build the social network. The initial parameters to set up in the code are
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as follows: the number of nodes, average number of edges, initial probability mean and standard
deviation, threshold number Uc, friend weight, and length of run time in months.

Data from Jack and Suri’s M-Pesa round 5 survey was used as a baseline estimate of the spread
of M-Pesa [14]. We summed the number of new adopters and cumulative percentage monthly from
March 2007 through July 2014. Figure 5 shows the percent of adopters through the time period.
Looking at the data, it seems to follow a logarithmic curve.

Figure 5: Using data collected from Jack and Suri, we plotted the increase in the percent of M-Pesa
users out of Kenya’s total population over 89 months.

Multiple simulations were run with the results plotted below. Each simulation was plotted against
the actual data to better show its fit.

Our first run created a strongly exponential growth, quickly reaching an asymptote at 100% as
shown in Figure 6 panel a. This did not fit the data well, as the output was more of a logistic curve.

Figure 6: Panel a) Trial 1 Panel b) Trial 2
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After the first trial, our goal was to eliminate the initial exponential behavior of our model, and to
try to fit the concave down portion of the trial to the empirical data’s logistic curve. To do this we
decided to run a simulation ignoring the original parameters. The dataset reports approximately
a 2% adoption rate in the first month, therefore the initial constraints had been set to achieve
a similarly low percentage for initial adopters. By ignoring this value, and letting the starting
percentage be around 44%, a curve was obtained that followed closely about 20 percentage points
above the empirical data curve as shown in Figure 6 panel b.

Thus far, the best fit run has been with 1, 000 nodes, 25 average edges, friend weight of 0.001, initial
utilities distributed with mean 0.21 and standard deviation 0.1, and a threshold utility of 0.3.

Best Fitting Parameters

Population Size 1,000
Initial Nodal Degree 25

Friend Weight 0.001
Initial Utility Distribution Mean 0.21

Initial Utility Distribution Standard Deviation 0.1
Threshold Utility 0.3

The resulting curve from inputting these parameters can be seen in Figure 7. A low threshold value
is to be expected, given the low costs of using M-Pesa compared to the benefits of money transfer.

Figure 7: Trial 3
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5.1 Conclusion

We performed a Kolmogorov-Smirnoff bootstrap test on the difference between the data from the
Jack and Suri dataset and our simulation results. The software for the bootstrap came from the
Matching Package in R developed by Sekhon [12]. Running the test initially, starting at January of
2008 because our data on the initial nine months of M-Pesa adoption is somewhat incomplete, the
point estimate of the difference in the two distributions was 0.42105 (p-value 2.815 ∗ 10−6).

Upon closer examination of the results, we recognized that there were two potential components of
distance between the distributions, namely a vertical difference and a shape difference. Because we
are ultimately interested in modelling how M-Pesa spreads, we uniformly shifted our simulation’s
adoption percentages vector by 9 percent, or the amount of the vertical difference at the end points.
When we ran the Kolmogorov-Smirnoff bootstrap on this new distribution, the point estimate for
the difference in the distributions to be 0.14474 (p-value 0.4036). This change in the results of
the nonparametric test indicate that our model effectively captures the pattern of M-Pesa adoption
within Kenya. Furthermore, evidence from the World Bank’s MENA Economic Monitor suggests
that 96% of Kenyan households have an M-Pesa account [8]. Our model reaches full diffusion at
96.3% , while the Jack and Suri data indicates full diffusion at 87.2% of the population, though the
Jack and Suri dataset ends at 2015, while the World Bank’s Data is from 2019.

Additionally we were able to estimate the proportion of never users to be 23.8% of non-users by
adding together the non-use reasons given in the tables. Under the full diffusion assumption the
percentage adoption of only non-users should be equivalent to the percentage of never users. In
the 2017 FII index data, 87.2% of individuals surveyed were users of M-Pesa. Combining these
two pieces of information, our point estimate of the size of the never-user population is 3.02% (the
proportion of the survey’s non users that are never users). This indicated to us that the full diffusion
model should approach a horizontal asymptote at 97% country-wide adoption. If we continue to
run our simulation past the time frame of 89 months, the model asymptotically approaches an
adoption level of 97.5%. The latest data on M-Pesa in Kenya show that adoption exceeds 96% of
households using M-Pesa, which suggests that our model and method of capturing the never-users
and the resulting steady state behavior is consistent with data. The next round of survey data
from the Brookings Institution’s Financial Inclusion Index will provide further information about
the diffusion of M-Pesa.

6 Discussion

We have considered several ways to extend our study further. Exploration of different function
that govern changes in a person’s utility of adoption may yield more accurate results. Ideally, we
would like to have regional demographic data to better assign utilities based on each individual’s
livelihood, social group, and personal factors to better tailor our model to the specific population
studied. Also of interest is the relationship between number of nodes, and average number of edges.
To most accurately model the spread, a reliable estimate of the number of close connections each
individual has is necessary. Our estimate was based on anecdotal data, but a more complete and
robust estimate would yield results that are more accurate with respect to the initial network setup.
We would also like to include in our model the occurrence of adding (and subtracting) new contacts
over time, as would happen in a more realistic social network.
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In general, the dynamics of updating utility values in response to the changes in an individual’s
contacts determine the long-run behavior of M-Pesa adoption more than changes in initial conditions
and parameters. This is an important consideration for firms looking to bring network goods to the
market. We believe that mobile money networks in the developed world should be examined through
the lens of a diffusion model, and this is a direction for future research. Our model of diffusion is
not limited to M-Pesa and is useful for any network good. However, the assumptions that govern
the dynamics of adoption for M-Pesa will likely change in accordance with properties specific to
the good being diffused. M-Pesa is unique in that registering as a user of the app carries relatively
low cost, in addition to the lower price schedule for users. This unique set of characteristics mean
that an individual is unlikely to discontinue their use of the app in a formal way. Our monotonicity
assumption relies on the pricing and system of M-Pesa, but other network goods may not follow this
general pattern.

Further studies of real world social network structures could be used to optimize targeted advertising
toward individuals on the part of the firm. The ideal candidate for advertising based on the network
structure is another topic of interest, with potential applications of machine learning techniques.

Additionally, M-Pesa has been brought to other markets in Africa, Latin America, East Asia, and
Eastern Europe. It was largely unsuccessful commercially. If data can be collected to assign indi-
viduals’ utility value based on individuals’ demographic information instead of randomly assigning
them based on a normal distribution, the diffusion model can then be applied to analyze why full
diffusion did not occur in specific countries. Similarly, this technique could be applied to prospective
markets to predict the extent of diffusion once mobile money is introduced.
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