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1 Introduction

In past decades, knot theory has frequently been used to further our understanding and knowledge of biology
and molecules. DNA molecules are especially inclined to this sort of study. Biologists and chemists use knot
theory to study the topological and geometric properties of DNA. DNA is composed of two long strands
called backbones (made of sugar and phosphate molecules) which twist around one another to form a double
helix [6] [10]. DNA resides inside the nucleus of a cell, but a DNA molecule is 1,000 to 500,000 times the
length of the diameter of the nucleus [5]. With such a long molecule stuffed into such a compact space, it is
unsurprising that DNA can become knottted, tangled, and linked [6]. In order for cell replication to occur,
DNA must unknot itself. To help DNA unknot itself, a special enzyme known as topoisomarase cuts through
the knotted parts of the DNA molecule without changing any intrinsic part of the DNA, and reconnects any
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loose ends [6] [8]. Problems can easily arise during cellular replication, especially if topoisomarase enzymes
do not work properly. By comparing the topological invariants of DNA before and after enzymes act on it,
we can learn more about mechanisms of these enzymes and their effects on the structure of DNA [7]. In
order to distinguish the different topological forms (knots) that DNA takes, we consider invariants, such as
the linking number. The intersection of knot theory and biology is a very active field. For example, this
field can be extended to cancer research and the development of Type I topoisomerase inhibiting treatments.
Although Type I topoisomerase helps during cellular replication, these enzymes can also help cancerous cells
to grow, which is very problematic [5]. Mathematicians and biologists are frequently making new discoveries
towards cancer research and other areas that stand at the intersection of biology and knot theory.

Spatial embeddings of graphs have been studied since the 1980s. Of particular influence is Conway and
Gordon’s 1983 paper in which they proved that any spatial embedding of K6 contains a non-trivial link, and
any spatial embedding of K7 contains a non-trivial knot [3].

Various models of random knots and links have been developed. Arsuaga et al. studied the mean squared
linking number of two random polygons generated by the Uniform Random Polygon within a confined space
in their paper [1]. Additionally, Even-Zohar et al. have studied the Petaluma model, and have found a
distribution for the linking number [4].

The linking number of book embeddings has also been studied. Rowland classified all possible links that
could appear in book embeddings of K6, as well as the connection between linking number and sheet number
[9].

We expand on these results by studying the distribution of the linking number in randomly generated
book embeddings of Kn. We begin by introducing book embeddings, and provide our exact and approximate
linking number calculations for book embeddings. We then show that the mean squared linking number of
two polygons of length n in a book embedding is 1

2n
2q, where q is a constant. Finally, we produce calculations

for the relative frequency of a linking number between two monotonic polygons, and investigate the maximum
linking number between two polygons.

2 Key Concepts

Definition 1. A graph G = (V,E) is a collection of V vertices and E edges connecting them.

Definition 2. A complete graph Kn is a graph with n vertices such that each vertex shares an edge with
every other vertex.

Definition 3. A spatial embedding of a graph places the graph into a 3-dimensional space such that the
vertices are points in R3 and the edges are non-intersecting curves.

Definition 4. A link L is two or more disjoint components or loops in 3-dimensional space.

The two components of a link may cross each other.

Definition 5. A crossing is positive if, from the perspective of the top strand, the bottom strand moves from
right to left.

Definition 6. A crossing is negative if, from the perspective of the top strand, the bottom strand moves from
left to right.

A positive and negative crossing are illustrated in Figure 1.
The linking number, `k, of a link is an invariant which measures how intertwined two components of a

link are.

Definition 7. The linking number is one half the number of positive crossings between two components
minus the number of negative crossings between the components, or

`k(L) =
1

2
((number of positive crossings)− (number of negative crossings))

For Definitions 8, 9, and 10, assume that we place our vertices on a circle, and label the vertices 1, 2, 3, . . .
in a clockwise direction.
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Definition 8. Given a polygon with edges {−−→a1a2,−−→a2a3, ...,−−−−→an−1an}, such that when a1 is the smallest vertex
in the polygon, that polygon is strictly increasing if for all i ∈ n, ai < ai+1.

Essentially, a strictly increasing polygon whose edges are always oriented from a smaller vertex to a larger
vertex.

Definition 9. Given a polygon with edges {−−→a1a2,−−→a2a3, ...,−−−−→an−1an}, such that when a1 is the largest vertex
in the polygon, that polygon is strictly decreasing if for all i ∈ n, ai > ai+1.

Definition 10. A polygon is monotonic if it is either strictly increasing or strictly decreasing.

For example, in Figure 2, the quadrilateral on the left is monotonic, because if we list the vertices in
order of orientation, starting from 1, we get 1234, which is strictly increasing. However, if we did the same
for the quadrilateral on the right, we get 1324, which is not monotonic, since 1 to 3 is increasing, 3 to 2 is
decreasing, and 2 to 4 is increasing, making it impossible to always be increasing or decreasing no matter
the starting vertex. Another way to think about it is that a monotonic polygon will never cross itself.

Figure 1: A positive crossing (left) and a negative crossing (right)
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Figure 2: Monotonic (left) and Non-Monotonic (right) Polygons

3 Book Embeddings

A book embedding places the vertices of a graph into a spine and the edges of a graph into discrete sheets
such that if two edges are on the same sheet, they do not cross [2] . The spine of a book embedding is
classically a straight line, the pages half-planes, and edges semi-circles. However, book embeddings have also
been studied as circles, by way of curving the spine such that it forms a circle. Then, the spine becomes a
circle, the pages discs, and the edges straight lines. In this paper, we will consider circular book embeddings.
We focus on book embeddings of Kn. For our model, n vertices will be placed equidistantly on a circle and
labeled from 1 to n clockwise. The perimeter of the circle will form the edges between vertex i and i + 1
for all i ∈ n (take the labels modulo n). These are exterior edges, and they do not cross any other edge.
The remaining edges are drawn inside the circle. These are interior edges. Since there are

(
n
2

)
edges in a

complete graph K2n, there are
(
n
2

)
− n interior edges. To generate a random spatial embedding of Kn, we

place each of the
(
n
2

)
− n interior edges into its own sheet, and then generate a random permutation π to

determine the heights of the sheets.
Once a book embedding has been generated, we consider pairs of cycles within the graph. For example,

there are 1
2

(
6
3

)
= 10 pairs of 3-cycles within K6 [3].
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Theorem 1. The number of pairs of cycles in a book embedding of Kn which use all n vertices is given by

fn =
1

2

n−3∑
i=3

(
n

i

)
(i− 1)!

2
· (n− i− 1)!

2

Proof. Say we have n vertices and we wish to draw Cycle A and Cycle B with these these vertices. So, we
will have i vertices in Cycle A and n − i vertices in Cycle B. There are

(
n
i

)
ways to choose which of the

vertices will be in Cycle A.
Then, there are different ways to order the vertices of both cycles A and B. If we have a vertices, it

doesn’t matter which vertex we start drawing the cycle with since all will be included, and choosing the

direction of the vertices also has no affect. So, there are (a−1)!
2 ways to draw a cycle with a vertices.

Therefore, there are (i−1)!
2 ways to draw Cycle A and (n−i−1)!

2 ways to draw Cycle B.
Then, we need to iterate over the different sizes of polygons we can have. We must have that both

polygons have at least three vertices, so we iterate from i = 3 to n − 3. Then, notice that we are double
counting. When i 6= n− i, for a size of a cycle s, we will consider this both when i = s and when n− i = s.
However, since the cycles are arbitrarily labelled, these will count the same cases. As well, when i = n− i,
we are only interested in the ways to select the vertices for half of the possible cycles, as the other half of
the cycles will be defined by not being selected. So, we half the entire summation.

Each of these pairs of cycles can be considered as a link, with each cycle forming one of the components.
Note that since the edges in book embeddings consist of straight lines, we may refer to these cycles as
polygons. Then we can calculate the linking number of all the pairs of links within the embedding. We can
repeat this process for all the possible different orderings of the pages of the book embedding. For a graph
Kn, there are (

(
n
2

)
− n)! different permutations of the interior edges. We seek to find the linking number

distribution for all of these cases.

4 Exact and Approximate Distributions
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Figure 3: Linking Number Distribution for Two Triangles (K6), One Triangle and One Quadrilateral (K7),
One Triangle and One Pentagon (K8), Two Quadrilaterals (K8), One Triangle and One Hexagon (K9), and
One Quadrilateral and One Pentagon (K9)

Using code, we find the exact distribution of all possible links in the book embeddings of K6, K7, K8, and
K9. The relative frequency of linking numbers in these cases is shown in Figure 3. Unfortunately, running
this code for graphs of size K10 or larger is not feasible, due to the factorial nature of the computations.
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4.1 Detailed Distribution of K6

For K6, there are 10 pairs of cycles (triangles) within the book embedding. The 10 pairs of cycles take one
of 3 forms:

1. Two Exterior Edges, One Interior Edge in each triangle. 3 of the 10 pairs are of this type. See the first
pair of triangles in Figure 12.

2. One Exterior Edge, Two Interior Edges in each triangle. 6 of the 10 pairs are this type. See the second
pair of triangles in Figure 12.

3. Three Interior Edges in each triangle. 1 of the 10 pairs is this type. See the third pair of triangles in
Figure 12.

For the first case, the linking number will be 0, since the triangles do not even cross.
For the second case, the linking number is 0 2

3 of the time and the linking number is |1| 1
3 of the time.

For the third case, the linking number is 0 33
60 of the time, the linking number is |1| 26

60 of the time, and
the linking number is |2| 1

60 of the time.
Combining these 3 cases, we find the linking number distribution for a random pair of cycles within a

book embedding of K6. These values are shown in Table 1.

Linking Number Relative Frequency (%)
-2 0.0833
-1 12.166
0 75.5
1 12.166
2 0.0833

Table 1: Relative Frequencies of Linking Numbers in K6

4.2 Detailed Distribution for K7

Within a book embedding of K7, there are 12 different ways to draw a quadrilateral and a triangle (see
Figure 4), and 105 total possible drawings.

Cases 1, 2, 4, 5, and 6 are topologically equivalent to Case 2 from K6, and thus have a linking number
distribution of P (lk = 0) = 2

3 and P (lk = |1|) = 1
3 . These cases occur a total of 56 out of the 105 drawings.

Cases 7 and 8 are topologically equivalent to Case 3 from K6, so they have a linking number distribution
of P (lk = 0) = 33

60 , P (lk = |1|) = 26
60 , and P (lk = |2|) = 1

60 . These cases occur a total of 14 out of the 105
drawings.

Case 4 has a linking number distribution of P (lk = 0) = 8
15 , P (lk = |1|) = 6

15 , and P (lk = |2|) = 1
15 .

This case occurs 7 out of the 105 drawings.
Case 9 has a linking number distribution of P (lk = 0) = 41

90 , P (lk = |1|) = 44
90 , and P (lk = |2|) = 5

90 .
This case occurs 7 out of the 105 drawings.

Cases 10, 11, and 12 must all have lk = 0, since the polygons do not even cross. These cases occur a
total of 21 our of the 105 drawings.

Combining these cases, we find the linking number distribution between a random triangle and quadri-
lateral within a book embedding of K7. These values are shown in Table 2.

4.3 Formulas for Calculating Linking Number

The code uses the following formula to calculate the linking number.

Lemma 2. Let there be two oriented edges, edge a denoted −−−−→aiai+1 and edge b denoted
−−−−→
bjbj+1, which cross.

Define E = {−−−−→aiai+1,
−−−→
bibi+1} Let π : E → S2 be a function which takes the edge −−−→vivi+1 to its height, where 2 is

the greatest height and 1 is the smallest height. When π(aiai+1) > π(bjbj+1), then the sign of their crossing
is

χ = sign((ai − ai+1)(bj − bj+1)((ai + ai+1)− (bj + bj+1)))
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Case 1 Case 2 Case 3

Case 6Case 5Case 4

Case 7 Case 8 Case 9

Case 10 Case 11 Case 12

Figure 4: 12 Cases of a Triangle and Quadrilateral

Linking Number Relative Frequency (%)
-2 0.5185
1 14.5925
0 69.777
1 14.5925
2 0.5185

Table 2: Relative Frequencies of Linking Numbers Between a Triangle and a Quadrilateral

Proof. To see this is true, there are 8 cases we have to consider, depending on the ordering of the endpoints.
From Figure 5, we can see that when if either ai or ai+1 is the largest vertex and ai− ai+1 and bj − bj+1

have the same signs, then the crossing is positive, and if ai − ai+1 and bj − bj+1 have different signs, then
the crossing is negative.

However, if either bj or bj+1 is larger than both ai and ai+1, then the crossing is the opposite sign of
sign((ai − ai+1)(bj − bj+1)).

We can account for this by multiplying by the value of (ai + ai+1)− (bj + bj+1). We can do this because
we assume the edges are crossing, meaning that the ordering of the values of the vertices must alternate
between the edge a and the edge b, as seen in the different cases of Figure 5. So, if one of the a vertices is
the largest, then ai + ai+1 > bj + bj+1, so we’ll get a positive value, but if one of the b vertices is the largest,
ai + ai+1 < bj + bj+1, so we’ll get a negative value.

Lemma 3. The cross ratio, CR, of two edges aiai+1 and bjbj+1 has a negative value when the two edges
intersect and a positive value when they do not.

CR(ai, ai+1, bj , bj+1) =
bj − ai
bj − ai+1

· bj+1 − ai+1

bj+1 − ai
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Figure 5: The 8 possible orderings of ai, ai+1, bj and bj+1.

Proof. If aiai+1 and bjbj+1 do not intersect, then the order of the vertices could be any of the following:

1. ai > ai+1 > bj > bj+1

2. ai+1 > ai > bj > bj+1

3. ai > ai+1 > bj+1 > bj

4. ai+1 > ai > bj+1 > bj

5. bj > bj+1 > ai > ai+1

6. bj > bj+1 > ai+1 > ai

7. bj+1 > bj > ai > ai+1

8. bj+1 > bj > ai+1 > ai

9. bj+1 > ai > ai+1 > bj

10. bj > ai > ai+1 > bj+1

11. bj+1 > ai+1 > ai > bj

12. bj > ai+1 > ai > bj+1

13. ai+1 > bj > bj+1 > ai

14. ai > bj > bj+1 > ai+1

15. ai+1 > bj+1 > bj > ai

16. ai > bj+1 > bj > ai+1

Regardless of the case, bj−ai and bj−ai+1 will have the same sign, making
bj−ai
bj−ai+1

> 0, and bj+1−ai+1

and bj+1 − ai will have the same sign, making
bj+1−ai+1

bj+1−ai > 0. The product of two positives will also be

positive. So if aiai+1 and bjbj+1 do not intersect, CR(ai, ai+1, bj , bj+1) > 0.
If aiai+1 and bjbj+1 do intersect, then the order of the vertices follows some alternating structure:
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1. ai > bj > ai+1 > bj+1:

bj − ai < 0 and bj − ai+1 > 0, so
bj−ai
bj−ai+1

< 0, and bj+1− ai+1 < 0 and bj+1− ai < 0, so
bj+1−ai+1

bj+1−ai > 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

2. ai+1 > bj > ai > bj+1:

bj − ai > 0 and bj − ai+1 < 0, so
bj−ai
bj−ai+1

< 0, and bj+1− ai+1 < 0 and bj+1− ai < 0, so
bj+1−ai+1

bj+1−ai > 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

3. ai > bj+1 > ai+1 > bj :

bj − ai < 0 and bj − ai+1 < 0, so
bj−ai
bj−ai+1

> 0, and bj+1− ai+1 > 0 and bj+1− ai < 0, so
bj+1−ai+1

bj+1−ai < 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

4. ai+1 > bj+1 > ai > bj :

bj − ai < 0 and bj − ai+1 < 0, so
bj−ai
bj−ai+1

> 0, and bj+1− ai+1 < 0 and bj+1− ai > 0, so
bj+1−ai+1

bj+1−ai < 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

5. bj > ai+1 > bj+1 > ai:

bj − ai > 0 and bj − ai+1 > 0, so
bj−ai
bj−ai+1

> 0, and bj+1− ai+1 < 0 and bj+1− ai > 0, so
bj+1−ai+1

bj+1−ai < 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

6. bj > ai > bj+1 > ai+1:

bj − ai > 0 and bj − ai+1 > 0, so
bj−ai
bj−ai+1

> 0, and bj+1− ai+1 > 0 and bj+1− ai < 0, so
bj+1−ai+1

bj+1−ai < 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

7. bj+1 > ai+1 > bj > ai:

bj −ai > 0 and bj −ai+1 < 0, so
bj−ai
bj−ai+1

< 0, and bj+1−ai+1 > 0 and bj+1 > ai < 0, so
bj+1−ai+1

bj+1−ai > 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

8. bj+1 > ai > bj > ai+1:

bj − ai < 0 and bj − ai+1 > 0, so
bj−ai
bj−ai+1

< 0, and bj+1− ai+1 > 0 and bj+1− ai > 0, so
bj+1−ai+1

bj+1−ai > 0.

Thus CR(ai, ai+1, bj , bj+1) < 0.

In each of these cases where aiai+1 and bjbj+1 intersect, CR(ai, ai+1, bj , bj+1) < 0.
Thus we have shown that CR(ai, ai+1, bj , bj+1) > 0 when aiai+1 and bjbj+1 do not intersect, and

CR(ai, ai+1, bj , bj+1) < 0 when aiai+1 and bjbj+1 do intersect.

Theorem 4. Let there be two oriented polygons, A and B, in a book embedding, such that polygon A contains
vertices {a1, a2, ..., an} and edges {−−→a1a2,−−→a2a3, ...−−−−→an−1an,

−−→ana1} and polygon B contains vertices {b1, b2, ..., bm}
and edges {

−−→
b1b2,

−−→
b2b3, ...

−−−−−→
bm−1bm,

−−→
bmb1}. For E = {−−→a1a2,−−→a2a3, ...−−−−→an−1an,

−−→ana1}∪{
−−→
b1b2,

−−→
b2b3, ...

−−−−−→
bm−1bm,

−−→
bmb1},

let the function π : E → Sm+n take the edge −−−→vivi+1 to it’s height, such that m+ n is the highest height and
1 is the lowest height. The linking number between two polygons is given by

`k(AB) =
1

2

∑
−−−−→aiai+1∈A

∑
−−−−→
bjbj+1∈B,π(−−−−→aiai+1)>π(

−−−−→
bjbj+1)

χ(1− sign(CR(ai, ai+1, bj , bj+1)))

Proof. By Lemma 3, we know that the cross ratio is negative when two edges cross and is positive when two
edges do not cross. Therefore, the value (1− sign(CR(ai, ai+1, bj , bj+1))) will be 2 whenever two edges cross
and will be 0 whenever two edges do not cross. So, the summation is only affected by edges that cross each
other.

Then, when a crossing does occur, by Lemma 2, χ gives us the sign of the crossing between edges
aiai+1 and bjbj+1, assuming π(aiai+1) > π(bjbj+1). Since our summation includes the same condition that
π(aiai+1) > π(bjbj+1), we only count crossings in which χ is accurate.
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Then, we multiply the summation by 1
2 , since the quantity (1− sign(CR(ai, ai+1, bj , bj+1))) will double

count whatever the crossing number actually is.

By only summing this value when the pairs of edges meet the condition π(−−−−→aiai+1) > π(
−−−−→
bjbj+1), we

calculate the linking number without needing to multiply by 1
2 . It is known that there must be an even

number of crossings between two polygons. So, say that as we move along polygon A, we label the crossings
from 1 to 2k. Then, say the crossings are paired, such that crossings 1 and 2 are a pair, crossings 3 and 4
are a pair, and so on. Then, we consider the different cases of these pairs of crossings.

Whenever a pair of crossings both have polygon A on top or both have polygon B on top, one of the
crossing signs will be positive and the other crossing sign will be negative. In either case, we will either not
count either crossing, contributing nothing to the summation, or count both crossings, in which we would
contribute a total of 0 to the summation.

If one of the crossings has polygon A on top and the other crossing has polygon B on top, then the
crossing sign of the two would be the same. We will count exactly one of these crossings. Then, we need not
multiply by 1

2 , since we are only going to count half of the positive crossings from this case and half of the
negative crossings from this case.

4.4 Random Code Results
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Figure 6: Linking Number Distribution for Two 7-gons, Two 9-gons, Two 11-gons, and Two 13-gons over
10,000,000 Iterations of Random Code

Using random code gives us an approximation of the linking number distribution between m- and n-gons
in book embeddings for large values of m and n where our systematic code is not applicable. Figure 6 shows
the linking number distribution between two 7-gons, 9-gons, 11-gons, 13-gons, and 15-gons over 10,000,000
iterations of this random code. Observe how the frequency of lk = 0 decreases and the frequency of higher
linking numbers increases as the polygons get bigger.

4.5 Systematic and Random Code Structures

As mentioned, using the above formulas we developed two codes to discover linking number distributions for
different sizes of polygons. We developed both a systematic and randomized simulation.
Systematic Code

For the systematic code, we generate all the the different pairs of disjoint sets of the m + n vertices.
Then, for each of these disjoint sets, we generate the possible drawings of these polygons by generating the
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distinct cycles. Next, for each possible pair of drawings, we generate all of the edges and the distinct edge
permutations. Then, for each edge permutation, we consider every possible pair of edges, one from each
polygon. Whenever the height of the edge from polygon A is greater than the height of the edge from polygon
B and the cross ratio of the two edges is negative, then we calculate the crossing sign between the two edges.
We complete this for all of the possible cases, and record cases accordingly. This code may be found at
https://colab.research.google.com/drive/1D4UdBq63p3KYpdoeWdXyQN3p9HwYrX7j?usp=sharing

Randomized Code
For the randomized code, we divide the m + n vertices randomly between two disjoint sets, and the

shuffle the order of these vertices in order to have a random drawing. Then, we generate the edges of these
polygons and randomize the order of these edges. Next, we consider every possible pair of edges, one from
each polygon. Whenever the height of the edge from polygon A is greater than the height of the edge from
polygon B and the cross ratio of the two edges is negative, then we calculate the crossing sign between the
two edges. Then, we record the linking number accordingly. We iterate this process 10000000 times in order
to get a reasonable sample of the possible polygons and their edge permutations. This code may be found
at https://colab.research.google.com/drive/1eDSgtD_qlUXaTsl04guQv12722cvyGbp?usp=sharing

5 Mean Squared Linking Number

5.1 Expected Value of Crossing Products

Borrowing ideas from the work of Arsuaga et al. [1], we set out to find the mean squared linking number for
book embeddings for two polygons. First, consider the case of two random oriented disjoint edges e1 and e2.
Since the two edges are disjoint, the probability that these two edges intersect in the projection is a positive
number we call 2p. Like Arsuaga et al., we define a random variable ε such that ε = 0 when e1 and e2 do
not intersect, ε = −1 when e1 and e2 form a negative crossing, and ε = 1 when e1 and e2 form a positive
crossing. Positive and negative crossings are defined in Figure 1.

Since the edges are randomly oriented, we know that P (ε = 1) = P (ε = −1) = p. Therefore, we know
that E(ε) = 0, and E(ε2) = (1)2 · p+ (−1)2 · p = 2p.

Next, we will consider how a set of four edges e1, e2, e′1, and e′2 will interact. Specifically, we are interested
in the expected product of the crossing sign of two different intersections. Like Arsuaga et al., we will define
ε1 as the crossing sign between edge e1 and edge e′1 and ε2 as the crossing sign between edge e2 and edge e′2.
Note that we will consider cases when some of these edges may be equal or share a vertex. The first case of
our lemma will be when e1 = e2 and e′1 = e′2, the case we considered previously.

Lemma 5. (1) If e1 = e2 and e′1 = e′2, then E(ε1ε2) = 2p > 0.

(2) If e1, e2, e′1, and e′2 are all disjoint edges, E(ε1ε2) = 0.

(3) If e1 = e2 and e′1 and e′2 are disjoint edges, then E(ε1ε2) = 0.

(4) If e1 and e2 are disjoint and e′1 and e′2 share a vertex, then E(ε1ε2) = 0.

(5) If e1 and e2 share a vertex and e′1 and e′2 share a vertex, then E(ε1ε2) = 0.

(6) If e1 = e2 and e′1 and e′2 share a vertex, then E(ε1ε2) = u < 0. More specifically, if we assume ε1 6= 0
and ε2 6= 0, then E(ε1ε2) = − 1

3 .

Proof. For all of these cases, if either ε1 = 0 or ε2 = 0, then ε1ε2 = 0. So, unless otherwise noted, only
consider cases in which ε1 6= 0 and ε2 6= 0.

(1) In this case, ε1 = ε2. So, E(ε1ε2) = E(ε21). Then, we know that the crossing number squared must be
positive. So, if P (ε1 = 1) = P (ε1 = −1) = p > 0, then E(ε21) = 2p > 0.

(2) Consider the current permutation of the edges e1, e2, e′1, and e′2 in the book embedding. Then, consider
the equally likely permutation in which we switch the edges e1 and e′1. Then, ε1 will switch signs, so
these two permutations will have opposite values of ε1ε2. Since this can be done for all permutations
of these edges, E(ε1ε2) = 0.
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(3) Consider the orientations of the edges e1 = e2, e′1, and e′2 in the current embedding. Then, consider
the equally likely orientation when e′1 is directed the opposite way. Then, ε1 will switch signs, so these
two permutations will have opposite values of ε1ε2. Since this can be done for all orientations of these
edges, E(ε1ε2) = 0.

(4) Consider the orientations of the edges e1, e2, e′1, and e′2 in the current embedding. Then, consider the
equally likely orientation when e1 is directed the opposite way. Then, ε1 will switch signs, so these
two permutations will have opposite values of ε1ε2. Since this can be done for all orientations of these
edges, E(ε1ε2) = 0.

(5) Consider the current permutation of the edges e1, e2, e′1, and e′2 in the book embedding. Then, consider
the equally likely permutation in which we switch the edges e1 and e′1. Then, ε1 will switch signs, so
these two permutations will have opposite values of ε1ε2. Since this can be done for all permutations
of these edges, E(ε1ε2) = 0.

(6) Notice that if we change the orientation of any edge in this case, both ε1 and ε2 change signs, as e1 = e2
and e′1 and e′2 are adjacent. Consider the different permutations of the book embedding of the three
edges. Of these six permutations, two of the permutations have ε1ε2 = 1, and four of the permutations
have ε1ε2 = −1. So, when we assume ε1 6= 0 and ε2 6= 0, we have E(ε1ε2) = 2

3 (−1) + 1
3 (1) = − 1

3 .
Therefore, since we know this is a possible configuration of edges, we may say that E(ε1ε2) = u < 0.

Interestingly, for the uniform random polygon (URP) model, case 5 did not have an expected value of 0.
Instead, the approximated value provided for this case was E(ε1ε2) = 0.012 ± 0.005. The reason why this
case is nonzero for the URP model and not for the book embedding is the case given by Figure 7. While
this figure is possible for the URP model, it is not possible for the book embedding model. Consider trying
to write the permutation of edges for these four edges. Start with edge e1. Underneath edge e1 is edge e′1.
Underneath edge e′1 is edge e2. Underneath edge e2 is edge e′2. Underneath edge e′2 is edge e1. But this
means that edge e1 is underneath itself, which is impossible in a book embedding permutation.

e1
e2

e'2

e'1

Figure 7: Embedding that is possible for URP model, but impossible for the Book Embedding model

5.2 Mean Squared Linking Number

Let’s consider the case of two random polygons R1 with m edges and R2 with n edges. Like Arsuaga et al.,
name the edges of R1 as e1, e2, · · · , em, and label the edges of R2 as e′1, e

′
2, · · · , e′n such that the order of the

edges matches the orientation of the polygon. We will say that εij is the crossing sign between edge ei and
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edge e′j . So, the linking number between the two polygons is 1
2

∑m
i=1

∑n
j=1 εij . This provides us with the

following result.

Theorem 6. The mean squared linking number between two polygons R1 with m edges and R2 with n edges
in a book embedding is 1

2nmq, where q = p+ 2u.

Proof. Name the edges of R1 as e1, e2, · · · , em, and label the edges of R2 as e′1, e
′
2, · · · , e′n such that the order

of the edges matches the orientation of the polygon. Then, the mean squared linking number is given by

E


1

2

m∑
i=1

n∑
j=1

εij

2
 =

1

4
E


 m∑
i=1

n∑
j=1

εij

2
 =

1

4

m∑
i=1

n∑
j=1

n∑
i′=m

n∑
j′=1

E(εijεi′j′).

This summation takes the sum of the all of the products of the ordered pairs of crossings. All of the
products of two crossings can be described by the six cases of Lemma 5. So, we may investigate how this
breaks down for each case. Indices are taken modulo m for R1 and modulo n for R2.

(1) This is the case in which i = i′ and j = j′. This case is analogous to the terms of the summation
m∑
i=1

n∑
j=1

E(ε2ij). This summation is equal to 2pnm as there are nm terms all with an expected value of

2p.

(2) This is the case in which i − i′ ≥ 2, i′ − i ≥ 2, j − j′ ≥ 2, and j′ − j ≥ 2, as both pairs of edges are
disjoint. We know that the expected value of all of these crossings is 0.

(3) This is the case in which i = i′, j − j′ ≥ 2, and j′ − j ≥ 2. This also includes cases in which i− i′ ≥ 2,
i′ − i ≥ 2, and j = j′. Here, one pair of edges is disjoint, while the other pair of edges are equivalent.
We know that the expected values of these crossings is 0.

(4) This is the case in which either i − i′ = 1 or i′ − i = 1, j − j′ ≥ 2, and j′ − j ≥ 2. This also includes
cases in which i − i′ ≥ 2, i′ − i ≥ 2, and either j − j′ = 1 or j′ − j = 1. Here, one pair of edges is
disjoint and the other pair of edges share a vertex. We know that the expected value of all of these
crossings is 0.

(5) This is the case in which either i− i′ = 1 or i′ − i = 1 and either j − j′ = 1 or j′ − j = 1. Here, both
pairs of edges share a vertex. We know that the expected value of all of these crossings is 0.

(6) This is the case in which i = i′ and either j − j′ = 1 or j′ − j = 1. This also includes cases in which
either i − i′ = 1 or i′ − i = 1 and j = j′. This case is thus analogous to the terms of the summa-

tion 2

m∑
i=1

n∑
j=1

(E(εijε(i−1)j) + E(εijεi(j+1))). Thus, we have 2

m∑
i=1

n∑
j=1

(E(εijε(i−1)j) + E(εijεi(j+1))) =

2

m∑
i=1

n∑
j=1

(u+ u) = 4unm.

So, as all other cases have values of 0, we have that

1

4

m∑
i=1

n∑
j=1

n∑
i′=m

n∑
j′=1

E(εijεi′j′) =
1

4

 m∑
i=1

n∑
j=1

E(ε2ij) + 2

m∑
i=1

n∑
j=1

(E(εijε(i−1)j) + E(εijεi(j+1)))

 =
1

4
(2pnm+

4unm) =
1

2
nm(p+ 2u) =

1

2
nmq.

5.3 Calculating q

Unlike other models, it is actually fairly easy to calculate the value of q in book embeddings.
In order to calculate the value for p, consider four vertices on a circle which define two lines. We only

need to consider these four points, as any four vertices may be topologically deformed to have one of the
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three structures we will consider. Notice that in Figure 8, there are three ways to draw the two lines between
these two points. In one of these ways, the two lines intersect. So, the expected probability of an intersection
is E(ε2 = 1) = 2p = 1

3 , so p = 1
6 .

Figure 8: There are three ways to draw two lines given four defined points, one of which has a crossing

In order to calculate the value for u, remember from Lemma 5, Case 6 that when ε1 6= 0 and ε2 6= 0,
then E(ε1ε2) = − 1

3 . Let’s find the probability that ε1 6= 0 and ε2 6= 0. Consider 5 vertices on a circle like in
Figure 9. These five vertices are enough to define an independent edge and two adjacent edges, so any case
of an independent edge and two adjacent edges can be topologically deformed to one of the cases we will
consider. First, draw the independent edge. As shown in the top left, there are five interior edges that could
have crossings (blue) and five exterior edges that cannot have crossings (red). So, 1

2 of the independent edges
could have ε1 6= 0 and ε2 6= 0. Then, once we have seleced an interior edge, there are three ways to draw
the adjacent edges with the remaining three vertices. One of these cases, the top right case has ε1 6= 0 and
ε2 6= 0. So, 1

3 of the choices for the adjacent edges have ε1 6= 0 and ε2 6= 0. So, the probability that ε1 6= 0 and
ε2 6= 0 is 1

2 ·
1
3 = 1

6 . Then, when ε1 6= 0 and ε2 6= 0 the expected value is − 1
3 , so u = E(ε1ε2) = − 1

3 ·
1
6 = − 1

18 .
Therefore, q = 1

6 + 2(− 1
18 ) = 1

18 . This means that the mean squared linking number is given by
1
2n

2 · 1
18 = 1

36n
2.

Figure 9: There are five independent edges that could have both crossings, and one of three ways to draw
the adjacent edges that have both crossings

6 Linking Number Distribution of Two Monotonic Polygons

In order to calculate the linking number distribution for two monotonic polygons, we found two distributions.
The first distribution inputs the number of crossings between the two polygons and outputs the linking
number distribution. The second distribution inputs the size of both polygons and outputs the distribution
of the number of crossings.
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6.1 Linking Number Distribution for 2k Crossings

For the distribution from the number of crossings to the linking number distribution, we used Euler’s Triangle.
Euler’s Triangle gives the number of permutations of length x with y ascents. An ascent in permutation π is
when πi < πi+1. We say that A(x, y) gives the value in the xth row and the yth column of Euler’s Triangle.

Theorem 7. The frequency of linking number r of two strictly increasing polygons with 2k crossings when

k ≥ 2 is A(2k−1, r+k−1) =
〈

2k−1
r+k−1

〉
. The relative frequency of a linking number is given by A(2k−1,r+k−1)

(2k−1)!
since a row of Euler’s triangle sums to (2k − 1)!.

Proof. Let A and B be two strictly increasing polygons with 2k crossings. If two monotonic polygons have
2k crossings, then each polygon has k interior edges, each of which has two crossings. Then we can consider
a permutation of these 2k edges in order to determine the linking number. We only need to consider the
permutation of the interior edges because the heights of the edges are only relevant so far as they give us
information about the crossings between the components of the link. Since the exterior edges never cross
any other edge, we may ignore their place in the permutation. The height of an exterior edge is irrelevant
to the linking number, so it can be ignored. For a given permutation, label the highest/uppermost edge as
2k, then moving counterclockwise, label the other edges in decreasing order, such that edge i for all i ∈ 2k
has a crossing with edges i− 1 and i+ 1. (When i = 2k, let i+ 1 = 1.) Let π : S2k → S2k be a function that
takes the elements of S2k to their heights in the permutation, with 2k being the topmost edge, and 1 being
the bottom-most edge. Then, the crossing sign between edge i and edge i + 1 can be determined by π(i)
and π(i + 1). When π(i) > π(i + 1), there is a negative crossing. When π(i) < π(i + 1), there is a positive
crossing, as seen in Figure 10.

i+ 1

i

π(i) > π(i+ 1)

negative crossing

i+ 1

i

π(i) < π(i+ 1)

positive crossing

Figure 10: A negative crossing (left) and a positive crossing (right) in terms of π(i) and π(i+ 1)

Then, the linking number for the link between polygon A and polygon B would be 1
2 the number of times

π(i) < π(i+ 1) minus the number of times π(i) > π(i+ 1) for all i ∈ 2k.
Observe that when π(i + 1) > π(i), this is equivalent to an ascension in the permutation π, and when

π(i + 1) < π(i), this is equivalent to an descent in the permutation π. Since we also consider whether
π(2k) > π(1) or whether π(2k) < π(1), this is essentially the distribution of the number of ascents in a
permutation of length 2k+1. However, two of these interactions between edges are not entirely independent.
By virtue of labeling the top-most edge to be 2k, that π(2k) = 2k. Then, regardless the heights of the other
edges, π(2k) > π(2k + 1) = π(1) and π(2k − 1) < π(2k). Then, since the π(2k) is always involved in one
ascent and one descent, we know these two interactions will cancel each other out, so we do not have to
consider any interactions with 2k. (Topologically, this would be equivalent to using Reidemeister moves to
remove the crossings with the top edge; since the edge is on top, it can be slid away from over everything
else, removing its two crossings, which would have been one positive and one negative). Then we are left
with 2k − 1 numbers in our permutation. The distribution of the number of ascents in a permutation of
length 2k− 1 is given by row 2k− 1 of Euler’s Triangle. Thus the linking number distribution of two strictly
increasing polygons with 2k crossings will have the same distribution as the 2k−1th row of Euler’s Triangle.
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Now that we have shown the linking number distribution for 2k crossings is equivalent to the 2k − 1th

row of Euler’s triangle, we must account for the fact that each row of Euler’s triangle starts at a value of 0
(since 0 is the lowest possible number of ascents in a permutation), whereas the linking number distribution
is symmetrical around 0 and includes negative values. To do this, we must shift the distribution leftward to
the lowest possible linking number in each row. Since there are 2k − 1 entries in the 2k − 1th row, we need
to shift everything leftwards by k− 1. So if we want to know the frequency of linking number r between two
polygons with 2k crossings, we would take the Euler triangle entry of A(2k − 1, r + k − 1) =

〈
2k−1
r+k−1

〉
.

6

5

4 3 2

1
> >

>
>

>

>

Figure 11: Example Pair of Polygons with 6 Crossings. Note that there are ellipses between vertices to
illustrate that there could be any amount of exterior edges between the vertices, but all cases where there
are 6 crossings are topologically equivalent to this structure.

Si π(Si) crossing sign between Si and Si+1 ascent or descent between π(Si) and π(Si+1)
1 5 − descent
2 4 − descent
3 3 − descent
4 2 − descent
5 1 + ascent
6 6 − descent

Table 3: Example Permutation of 6 edges

Si π(Si) crossing sign between Si and Si+1 ascent or descent between π(Si) and π(Si+1)
1 5 − descent
2 4 − descent
3 3 − descent
4 2 − descent
5 1

Table 4: Example Permutation of 6 Edges, Ignoring Interactions With Edge 6

An example of the connection between ascents, descents, crossing signs, and linking number is shown in
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Figure 11 and Tables 3 and 4. Observe in Table 3 that π(5) < π(6) > π(1). Thus π(5) will have an ascent
and π(6) will have a descent. Since these two values cancel out, we can consider Table 4, which ignores these
values. Then we are left with 4 descents, 4 negative crossings, and a linking number of -2.

Table 5 shows the linking number distribution for 2 polygons with 2k crossings for 0 ≤ k ≤ 6, as generated
by Euler’s Triangle.

Corollary 7.1. The frequency of linking number r of two monotonic polygons with 2k crossings when k ≥ 2

is A(2k− 1, r+ k− 1) =
〈

2k−1
r+k−1

〉
. The relative frequency of a linking number is given by A(2k−1,r+k−1)

(2k−1)! since

a row of Euler’s triangle sums to (2k − 1)!.

Proof. Very simply, by changing the orientation of a single polygon in the above proof, we make every
positive crossing a negative crossing and vice versa. Therefore, since this will happen to every crossing,
the actually linking number distribution will remain unchanged, meaning that our computation is true for
monotonic polygons in general.

k\lk -5 -4 -3 -2 -1 0 1 2 3 4 5
0 1
2 1 4 1
3 1 26 66 26 1
4 1 120 1191 2416 1191 120 1
5 1 502 14608 88234 156190 88234 14608 502 1
6 1 2036 152637 2203488 9738114 15724248 9738114 2203488 152637 2036 1

Table 5: Linking Number Distribution for Two Polygons with 2k Crossings

6.2 Polygon Crossing Distributions

Since the linking number distribution depends solely on the number of crossings between two polygons, and
not the number of edges in the polygons, it is pertinent to know how frequently two polygons, one with n
vertices and one with m vertices, will have 2k crossings. There are two cases, depending on whether n = m.

Theorem 8. The frequency with which a book embedding of two n-gons has 2k crossings where k ≥ 2 is(
n

n−k
)(
n−1
n−k
)
.

Proof. The number of ways to draw two polygons of size n with 2k crossings is equivalent to the number of
ways to place n identical balls into k of n distinct boxes.

First, we choose k of n boxes. Starting at vertex 1, draw the n edges of one of the polygons. Choose k
of these edges to be interior edges, such that the polygon has a general structure, in which we know which
edges will cross with the other polygon, but we do not know how the vertices of the other polygon will be
distributed. There are

(
n
k

)
=
(
n

n−k
)

ways to build this first polygon.
The k interior edges of the first polygon creates k spaces, or boxes, in which we will place the n vertices

of the second polygon. None of the boxes (spaces) can be empty, as this would mean the edge we decided
was an interior edge would be an exterior edge, and we would not obtain 2k crossings. So, to ensure no box
is empty, first we place one ball (or vertex) into each box, or space. Then, we distribute the n− k remaining
identical balls/vertices into k distinct boxes, which is simply a stars and bars distribution, which gives us(
(n−k)+k−1

n−k
)

=
(
n−1
n−k
)
.

Since the polygons are the same size, we do not need consider the order that we draw the polygons using
this distribution, so combining the distribution, we have

(
n

n−k
)(
n−1
n−k
)
.

Table 6 gives this crossing number distribution for 3 ≤ n ≤ 10.

Theorem 9. The frequency with which a book embedding of an m-gon and an n-gon has 2k crossings where
k ≥ 2 is (

m

m− k

)(
n− 1

n− k

)
+

(
n

n− k

)(
m− 1

m− k

)
.

when m 6= n.
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n \ k 0 2 3 4 5 6 7 8 9 10
3 3 6 1
4 4 18 12 1
5 5 40 60 20 1
6 6 75 200 150 30 1
7 7 126 525 700 315 42 1
8 8 196 1176 2450 1960 588 56 1
9 9 288 2352 7056 8820 4704 1008 72 1
10 10 405 4320 17640 31752 26460 10080 1620 90 1

Table 6: Crossing Number Distribution for Two n-gons

Proof. We will break down this computation into two cases, depending on which polygon includes vertex 1.
Say we start drawing the polygon with m edges at vertex 1. Draw the m edges of this polygon, and

choose k of the edges to be interior edges. such that the polygon has a general structure, in which we know
which edges will cross with the other polygon, but we do not know how the vertices of the other polygon
will be distributed. There are

(
m
k

)
=
(
m

m−k
)

ways to build this first polygon.
The k interior edges of the first polygon creates k spaces in which we will place the n vertices of the

second polygon. None of these spaces can be empty, as this would mean the edge we decided was an interior
edge would be an exterior edge, and we would not obtain 2k crossings. So, to ensure no space is empty, first
we place one vertex into each space. Then, we distribute the n− k remaining vertices into k distinct spaces,
which is simply a stars and bars distribution, which gives us

(
(n−k)+k−1

n−k
)

=
(
n−1
n−k
)
.

So, there are
(
m

m−k
)(
n−1
n−k
)

ways to draw the polygon when the polygon with m vertices includes vertex 1.
We may again go through this process, but instead with the polygon with n vertices including vertex 1.

This gives us
(
n

n−k
)(
m−1
m−k

)
ways to draw the two polygons.

So, in total there are
(
m

m−k
)(
n−1
n−k
)

+
(
n

n−k
)(
m−1
m−k

)
ways to draw the polygons of length m and n with 2k

crossings.

6.3 Linking Number Distribution Calculation

Using Sections 6.1 and 6.2, we can make a formula to find the linking number distribution based on the size
of two polygons n and m. However, to do this, we will redefine our above calculations slightly. Rather than
using number of crossings, 2k, between the two polygons, we will use the number of interior edges 2h, where
each polygon has h interior edges. This is shown in Figure 12 for various numbers of buckets. Note that two
polygons always have the same number of interior edges, and any drawings that have the same number of
interior edges also have the same number of crossings.

Figure 12: Different drawings of two triangles can have two (left), four (center), or six (right) interior edges

For k ≥ 2, the number of crossings is equivalent to the number of interior edges. When there are 2k
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crossings, each of the polygons has k interior edges, and there are 2k total interior edges. Thus 2k = 2h
when k ≥ 2. This means that for our distributions in Theorems 7, 8, and 9 we may replace k with h.

However, when there are 0 crossings there are not 0 but rather 2 interior edges, one for each polygon; see
Figure 12. So, for 0 crossings we have h = 1. Let’s ensure this works for all of our distributions.

For Theorem 7, we want to know the distribution of the linking number when there are 0 crossings or

2 interior edges. The value A(2h−1,r+h−1)
(2h−1)! = 1 when 2h = 2 and r = 0. In all other cases, this value is 0.

Therefore, the first distribution works for this number of interior edges.
For Theorem 8, when h = 1,

(
n

n−h
)(
n−1
n−h

)
=
(
n
n−1
)(
n−1
n−1
)

= n. This is accurate, as when you draw two
non-overlapping polygons of the same size, there are n distinct drawings.

For Theorem 9, when h = 1,
(
m

m−h
)(
n−1
n−h

)
+
(
n

n−h
)(
m−1
m−h

)
= m + n. This is accurate, as when you draw

two non-overlapping polygons of the different sizes, there are m+ n distinct drawings.
So, all of the distributions will work appropriately using interior edges, covering all possible numbers of

crossings. Note that 2 crossings is not possible for book embeddings.
Therefore, we may arrive at the following results.

Theorem 10. For two polygons of n vertices, the relative frequency of linking number r is D(n, r) =∑n
h=1

A(2h−1,r+h−1)
(2h−1)!

(
n

n−h
)(
n−1
n−h

)∑n
h=1

(
n

n−h
)(
n−1
n−h

) .

Proof. For each of the possible numbers of interior edges, there are
(
n

n−h
)(
n−1
n−h

)
distinct drawings, and the

relative frequency of linking number r of these drawings is given by A(2h−1,r+h−1)
(2h−1)! . Then, since polygons of

n edges cannot have more than n interior edges, we sum from h = 1 to n. So, we sum this amount, and then
divide by the total number of possible drawings, given in the denominator.

This distribution is illustrated in Figure 13, with exact probabilities listed in Table 7.
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Figure 13: Relative Frequency of Linking Number for Two Monotonic n-gons in K2n
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K2n \lk -5 -4 -3 -2 -1 0 1 2 3 4 5

K6 0.0833 12.1666 75.5 12.1666 0.0833
K8 0.00056689 0.3537 16.67517 65.941 16.67517 0.3537 0.00056689

K10 7.874 × 10−6 0.004247 0.8067 19.55 59.27 19.55 0.8067 0.004247 7.874 × 10−6

K12 0 2.89 × 10−5 0.01625 1.439 21.389 54.375 21.389 1.439 0.01625 2.89 × 10−5 0

Table 7: Relative Frequency of Linking Number for Two Monotonic n-gons in K2n. Note that the probability
of obtaining a linking number of ±5 within a book embedding of K12 is non-zero, just incredibly small (less
than 1 in 18 billion).

Theorem 11. For two polygons, one with m vertices and the other with n vertices such that m 6= n, the

relative frequency of linking number r is D(m,n, r) =

∑n
h=1

A(2h−1,r+h−1)
(2h−1)!

((
m

m−h
)(
n−1
n−h

)
+
(
n

n−h
)(
m−1
m−h

))
∑n
h=1

((
m

m−h
)(
n−1
n−h

)
+
(
n

n−h
)(
m−1
m−h

)) .

Proof. Follow the same proof as for Theorem 10. However, instead there are
(
m

m−h
)(
n−1
n−h

)
+
(
n

n−h
)(
m−1
m−h

)
possible drawings of the two polygons. As well, there can be no more than min(m,n) interior edges for
either of the polygons. So, we can use n as our upper bound and sum from h = 1 to n.

6.4 Investigation of Limits

We also are investigating the limits of linking number distributions for monotonic polygons, so we may have
a more general idea about the expected distributions. While we know there exists some trends that a higher
number of defined edges means a greater relative frequency of larger linking numbers, we are not entirely
sure where these trends will lead.

One of the most fruitful of these investigations has been in regards to a normalized curve of the linking
number distribution, mapping relative frequencies to their linking number divided by the size of the polygons
of interest. We can see this in Figure 14. We notice that all of these lines seem to follow a similar structure.
We hope to eventually show that this structure tends toward a specific limiting distribution.

Figure 14: Relative Frequency of Linking Numbers -5 through 5 for Two n-gons

To generate this graph, we wrote code that used Theorem 10 to calculate the linking number distributions
for a few linking numbers and sizes of n-gons. This code can be found at https://colab.research.

google.com/drive/1wFj43GavnSxwp7QpGGC8FTdFKSBcRd_l?usp=sharing, but appears to be having trouble
for some large values.
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7 Maximum Linking Number

We have found the following bounds on the maximum linking number in a book embedding of a complete
graph. We believe that the upper bound could be improved.

Lemma 12. If two polygons have k crossings which alternate which polygon is the over strand, the linking
number between the polygons is ±k2 .
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Figure 15: Link with alternating structure

Proof. Let polygon A and polygon B be the two components of a link such that the crossings between them
alternate which polygon is the overstrand and which polygon is the understrand. So, consider a localized
space of two adjacent crossings. Assume that the first crossing has a value of χ. If we move along polygon
A, then at the next crossing, polygon B will now move in the opposite direction with respect to polygon A
as before, meaning that the crossing sign would be −χ. However, since the previous under strand is now
the over strand, the crossing sign would be −(−χ) = χ. So the two crossings would have the same sign.
We may do this process for any given pair of adjacent crossings, so all of the crossings must have the same
value. Then, when we calculate the linking number, we get 1

2k · χ, where χ = ±1. Thus the linking number

for this pair of polygons is ±k2 .

An example of Lemma 12 can be seen in Figure 15. At each crossing, the component whose strand is the
overstrand alternates, causing all of the crossings to have the same sign. Since there are k = 8 crossings, all
of which are positive, the linking number is 8

2 = 4.

Theorem 13. The maximum linking number for a pair of cycles in a book embedding of Kn is at least⌊
n− 2

2

⌋
and at most

n2

8
.

Proof. First we will show that the maximum linking number is at least

⌊
n− 2

2

⌋
.

Label the vertices of Kn starting with 1 and moving clockwise up to n. Let the odd numbered vertices
are part of polygon A, and the even numbered vertices are part of polygon B. Then, our book embedding
will be the permutation of edges 13, 24, 35, 46, 57, · · · . An example of this structure is seen in Figure 16.

When n is odd, the edge between vertex n and vertex 1 is an exterior edge, and therefore irrelevant to
the permutation of the book embedding. Therefore, the n−1

2 remaining edges of polygon A will each cross
with two edges from polygon B. Therefore, there are n − 1 crossings between the two polygons. Label the
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crossing of edges 13 and 24 as crossing c1, and working clockwise, label the crossings up to cn−1. Then we
will have that the odd crossings will have an edge from polygon A going over an edge from polygon B, and
the even crossings will have an edge from polygon B going over an edge from polygon A, except for the
crossing cn−1, in which edge 13 will go over the edge between vertex n− 1 and vertex 2. Using Reidemeister
Move 2, we may show that c1 and cn−1 do not contribute to the linking number. Then, we are left with n−3
crossings which alternate the over and under components. By Lemma 12, we know all of these crossings will
have the same sign. Therefore, since all of the crossings will be the same sign, the linking number will be
n−3
2 which is equal to bn−22 c when n is odd.

When n is even, there are n crossings, as each of the n
2 edges from polygon A will cross with two of the

edges from polygon B. Label the crossing of edges 13 and 24 as crossing c1, and working clockwise, label
the crossings up to cn. Then the odd crossings will have an edge from polygon A going over an edge from
polygon B, and the even crossings will have an edge from polygon B going over an edge from polygon A,
except for the crossing cn, in which edge 13 will go over the edge between vertex n and vertex 2. Using
Reidemeister Move 2, we may show that c1 and cn do not contribute to the linking number. Then, we are
left with n − 2 crossings which alternate the over and under components. By Lemma 12, we know all of
these crossings will have the same sign. Therefore, since all of the crossings will be the same sign, the linking
number will be n−2

2 .
We have shown that there is always a permutation of the edges of Kn, regardless of the parity of n, such

that there exists a link with linking number

⌊
n− 2

2

⌋
within the book embedding of Kn. Thus the maximum

linking number of a book embedding of Kn is at least

⌊
n− 2

2

⌋
.

Now we will show that the maximum linking number of a book embedding of Kn is at most
n2

8
.

The maximum linking number between two polygons A and B with a edges and b edges, respectively,
would occur when there is the maximum number of crossings between A and B. Since A and B are cycles
within a book embedding of Kn, a + b = n. The maximum number of crossings would occur when every
edge in polygon A crosses every edge in polygon B, which would give a total of ab crossings. Observe that

ab = a(n−a) has a maximum when a = b = n
2 . So the maximum number of crossings would be n

2 ×
n
2 = n2

4 .

Given n2

4 crossings, the maximum linking number would occur when all of the crossings had the same

sign. This would give us a linking number of
n2

4

2
=
n2

8
.

Note that if n is odd, the most equitable distribution of edges would give one polygon n−1
2 edges and the

other n+1
2 edges. Since n−1

2 ×
n+1
2 < (n2 )2, our upper bound still holds.

Thus we have shown that the upper bound of the maximum linking number between a pair of cycles in

a book embedding of Kn is
n2

8
.

Theorem 14. The maximum linking number of a pair of monotonic polygons within a book embedding of
Kn is bn−22 c .

Proof. By Theorem 7, the linking number distribution for two monotonic polygons with 2k crossings is
equivalent to Euler’s triangle distribution for the row 2k− 1. The 2k− 1th row of Euler’s triangle has 2k− 1
entries. One of these entries corresponds to lk = 0, then the remaining 2k− 2 entries would be symmetrical.
So the maxiumum linking number would be 2k−2

2 = k − 1.
There are two cases, depending on the parity of n. When n is even, the maximum number of crossings

between two polygons in Kn would occur when each polygon had n
2 edges, all of which are interior edges,

which would create n crossings. Then, the maximum linking number would be n
2 − 1 = n−2

2 .
If n is odd, then the maximum number of crossings between two polygons in Kn would be when one

polygon has n−1
2 edges, all of which are interior, and the other has n+1

2 edges, all but one of which are interior.
This would create n− 1 crossings. Then the maximum linking number would be n−1

2 − 1 = n−3
2 = bn−22 c.

Since the maximum linking number between two monotonic polygons in Kn is n−2
2 when n is even and

bn−22 c when n is odd, we conclude that the maximum linking number between two monotonic polygons in
Kn is bn−22 c.
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Figure 16: Two polygons in K7 which have the maximum linking number of 2

8 Conclusion

While we have found the mean squared linking number for all polygons in book embeddings, finding the
linking number distribution for all polygons has been a challenge. In future work, we hope to expand our
results to include non-monotonic polygons, but we believe this may require a different approach. Additionally,
our current distribution for monotonic polygons is not a closed-form expression, so an analysis of the limits of
this equation may provide us with more information about how the distribution relates to other calculations.

Intuition as well as results from our systematic and random code suggest that the linking number dis-
tribution should approach a uniform distribution, but this is yet to be proved. For specifically monotonic
polygons, Figure 14 motivates this aspect of our research. Investigating the limits of our calculation should
encompass a significant part of our future work.
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